CHRISTINA RIVER BASIN

01479820 RED CLAY CREEK NEAR KENNETT SQUARE, PA (Pennsylvania Water-Quality Network Station)

LOCATION.--Lat 39°49'00", long 75°41'31", Chester County, Hydrologic Unit 02040205, on left bank along SR 82 (Creek Road), and 3.0 mi south of the intersection of SR 82 and U.S. Highway 1 at Kennett Square.

DRAINAGE AREA.--28.3 mi².

WATER-DISCHARGE RECORDS

PERIOD OF RECORD.--January 1988 to current year.

Discharge

GAGE.--Water-stage recorder and crest-stage gage. Elevation of gage is 200 ft above National Geodetic Vertical Datum of 1929, from topographic map.

REMARKS.--No estimated daily discharges. Records poor. Some regulation upstream of gage. Several measurements of water temperature were made during the year. Satellite telemetry at station.

Discharge

Gage Height

PEAK DISCHARGES FOR CURRENT YEAR.--Peak discharges greater than a base discharge of 1,000 ft³/s and maximum (*):

Gage Height

Date	Ti	me D	ft ³ /s	Gage Height (ft)			Date	e Ti		harge t ³ /s	(ft)	
June	19 21	.45	*981	*5.84			(No	peaks	above bas	e disc	narge.)	
			DISCHA	ARGE, CUBIC F	EET PER SI		TER YEAR C EAN VALUES		001 TO SEPTE	EMBER 200)2	
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1 2 3 4 5	13 13 12 12 12	14 15 14 12 13	12 12 12 12 12	15 14 13 12 12	24 21 18 17 16	15 16 133 24 18	30 19 19 18 17	25 39 26 20 19	17 15 15 14 14	17 17 17 15 14	7.8 7.7 8.2 7.9 9.3	17 14 11 9.3 8.4
6 7 8 9 10	15 12 11 12 13	13 12 12 12 12	12 12 15 20 12	29 40 22 18 20	16 16 16 16	16 15 15 14 20	16 14 15 16 17	18 18 18 19	50 49 18 14	13 13 13 13 15	9.4 6.4 6.1 5.1 5.0	8.0 7.8 7.9 7.8 8.0
11 12 13 14 15	13 14 15 14 23	11 11 11 12 12	17 17 17 23 20	78 30 21 18 18	19 16 16 15 16	16 16 27 27 24	17 19 18 17 18	17 19 42 30 20	13 14 18 58 31	12 12 11 15 15	5.2 5.1 5.0 4.7 6.9	7.7 11 10 7.1 7.9
16 17 18 19 20	15 16 15 15	12 11 11 11 13	17 18 33 20 18	17 16 15 15 17	16 15 15 15 16	24 24 52 24 111	16 16 17 22 28	18 17 135 35 25	28 20 15 140 69	13 11 9.9 9.7	5.1 11 16 5.0 6.2	14 8.1 7.5 6.7 7.3
21 22 23 24 25	14 15 16 16 16	12 11 11 11 30	18 17 16 34 19	16 17 19 59 32	22 16 15 15	43 25 20 20 19	15 24 18 17 24	22 20 19 19 19	22 16 14 32 43	8.7 9.1 8.7 13 9.8	5.7 6.0 6.4 10	5.5 5.0 5.9 6.0
26 27 28 29 30 31	14 13 13 13 14 14	31 17 16 15 13	17 17 17 17 16 16	19 17 17 16 16 28	15 16 15 	20 79 25 21 19 22	24 20 86 31 24	18 19 20 18 18	22 29 35 20 17	8.9 9.9 9.8 11 8.0	4.6 5.1 11 131 29 10	19 66 39 12 12
TOTAL MEAN MAX MIN	438 14.1 23 11	411 13.7 31 11	535 17.3 34 12	696 22.5 78 12	464 16.6 24 15	944 30.5 133 14	652 21.7 86 14	788 25.4 135 17	876 29.2 140 13	372.5 12.0 17 8.0	371.9 12.0 131 4.6	362.9 12.1 66 5.0
STATISTICS OF MONTHLY MEAN DATA FOR WATER YEARS 1988 - 2002, BY WATER YEAR (WY)												
MEAN MAX (WY) MIN (WY)	26.6 75.5 1997 10.8 1995	31.0 61.3 1997 10.9 1999	40.3 128 1997 12.9 1999	48.0 96.1 1996 22.0 1992	42.7 81.2 1994 16.6 2002	60.1 116 1994 30.5 2002	45.6 85.5 1993 21.7 2002	40.5 79.2 1989 21.7 1999	32.6 57.3 1996 16.0 1995	26.7 94.5 1989 12.0 1995	21.5 55.2 1996 5.84 1995	29.2 89.4 1999 8.83 1995

CHRISTINA RIVER BASIN

01479820 RED CLAY CREEK NEAR KENNETT SQUARE, PA--Continued

SUMMARY STATISTICS	FOR 2001 CALENDAR YEAR	FOR 2002 WATER YEAR	WATER YEARS 1988 - 2002
ANNUAL TOTAL	11193.4	6911.3	
ANNUAL MEAN	30.7	18.9	37.2
HIGHEST ANNUAL MEAN			52.0 1997
LOWEST ANNUAL MEAN			18.9 2002
HIGHEST DAILY MEAN	454 Mar 30	140 Jun 19	1820 Sep 16 1999
LOWEST DAILY MEAN	8.9 Aug 9	4.6 Aug 26	0.86 Sep 3 1995
ANNUAL SEVEN-DAY MINIMUM	11 Aug 3	5.2 Aug 8	1.1 Sep 2 1995
MAXIMUM PEAK FLOW		981 Jun 19	a 4680 Sep 16 1999
MAXIMUM PEAK STAGE		5.84 Jun 19	10.04 Sep 16 1999
10 PERCENT EXCEEDS	54	29	59
50 PERCENT EXCEEDS	20	16	26
90 PERCENT EXCEEDS	12	8.0	12

a From rating curve extended above 2,100 ft³/s.

CHRISTINA RIVER BASIN

01479820 RED CLAY CREEK NEAR KENNETT SQUARE, PA--Continued (Pennsylvania Water-Quality Network Station)

WATER-QUALITY RECORDS

PERIOD OF RECORD.--April 2002 to current year.

REMARKS.--Other data for the Water-Quality Network can be found on pages 410-425.

COOPERATION.—Samples were collected as part of the Pennsylvania Department of Environmental Protection Water-Quality Network (WQN) with cooperation from the Pennsylvania Department of Environmental Protection.

WATER-QUALITY DATA, WATER YEAR OCTOBER 2001 TO SEPTEMBER 2002

Date	Time	AGENCY ANA- LYZING SAMPLE (CODE NUMBER) (00028)	DIS- CHARGE, INST. CUBIC FEET PER SECOND (00061)	SAM- PLING METHOD, CODES (82398)	OXYGEN, DIS- SOLVED (MG/L) (00300)	PH WATER WHOLE FIELD (STAND- ARD UNITS) (00400)	SPE- CIFIC CON- DUCT- ANCE (µS/CM)	TEMPER- ATURE WATER (DEG C) (00010)	HARD- NESS TOTAL (MG/L AS CACO3) (00900)	CALCIUM TOTAL RECOV- ERABLE (MG/L AS CA) (00916)	MAGNE- SIUM, TOTAL RECOV- ERABLE (MG/L AS MG) (00927)	ANC WATER UNFLTRD FET LAB (MG/L AS CACO3) (00417)	CHLO- RIDE, DIS- SOLVED (MG/L AS CL)
APR 2002 24	1340	9813	17	30	12.7	8.2	403	13.0	170	40.5	16.3	90	37.6
JUN 25	1420	9813	31	30	9.0	7.9	310	23.0	120	28.3	11.1	70	23.9
AUG 28	1115	9813	8.3	30	8.9	8.0	476	21.4	170	40.7	17.3	112	39.0
	SULFATE		RESIDUE TOTAL AT 105	NITRO- GEN,	NITRO- GEN,	NITRO- GEN,	NITRO-	ORTHO- PHOS- PHATE,	PHOS-		CARBON,	OXYGEN DEMAND, BIO-	OXYGEN DEMAND, CHEM-
Date	DIS- SOLVED (MG/L AS SO4) (00945)	DEG. C, DIS- SOLVED (MG/L) (00515)	DEG. C, SUS- PENDED (MG/L) (00530)	AMMONIA TOTAL (MG/L AS N) (00610)	NITRATE TOTAL (MG/L AS N) (00620)	NITRITE TOTAL (MG/L AS N) (00615)	GEN, TOTAL (MG/L AS N) (00600)	DIS- SOLVED (MG/L AS P) (00671)	PHORUS TOTAL (MG/L AS P) (00665)	DIS- SOLVED (MG/L AS C) (00681)	ORGANIC TOTAL (MG/L AS C) (00680)	CHEM- ICAL, 5 DAY (MG/L) (00310)	ICAL (HIGH LEVEL) (MG/L) (00340)
APR 2002 24 JUN	37.8	312	28	.040	4.79	.050	5.2	.309	.350	3.1	3.3	1.1	<10
25 AUG	30.2	246	18	.170	2.70	.040	3.3	.174	.250	7.5	6.8	2.0	28
28	40.5	710	12	<.020	4.56	<.010	5.1	.645	.670	3.4	3.6	.5	<10
Date	FECAL COLI- FORM, MFC MF, WATER (COL/ 100 ML) (31616)	ARSENIC DIS- SOLVED (µG/L AS AS) (01000)	ARSENIC TOTAL (µG/L AS AS) (01002)	CADMIUM DIS- SOLVED (µG/L AS CD) (01025)	CADMIUM WATER UNFLTRD TOTAL (µG/L AS CD) (01027)	CHRO- MIUM, HEXA- VALENT, DIS. (µG/L AS CR) (01032)	CHRO- MIUM, TOTAL RECOV- ERABLE (µG/L AS CR) (01034)	COPPER, DIS- SOLVED (µG/L AS CU) (01040)	COPPER, TOTAL RECOV- ERABLE (µG/L AS CU) (01042)	IRON, DIS- SOLVED (µG/L AS FE) (01046)	IRON, TOTAL RECOV- ERABLE (µG/L AS FE) (01045)	LEAD, DIS- SOLVED (µG/L AS PB) (01049)	LEAD, TOTAL RECOV- ERABLE (µG/L AS PB) (01051)
APR 2002 24 JUN	180	<4.0	<4	<.20	<.2	<1	<4	<4	<4	50	170	<1.0	<1.0
25 AUG	20000	<4.0	<4	<.20	<.2	<1	<4	<4	7.3	80	1420	<1.0	2.5
28	1000	<4.0	<4	<.20	<.2	<1	<4	<4	<4	30	150	<1.0	<1.0
	Date APR 200 24 JUN 25	AS M (0105	$_{\rm C}$, TOTA $_{\rm C}$ RECO $_{\rm C}$ ERAB $_{\rm C}$ ($\mu_{\rm G}$ $_{\rm C}$ IN) AS M	L MERCU V- DIS LE SOLV /L (µG, IN) AS H	F- RECO FED ERAB /L (μG, GG) AS H (0) (7190	L NICKEI V- DIS- LE SOLVI /L (µG, G) AS NI	RECC ED ERAB /L (µG I) AS N	LL NIUM V- DIS SLE SOLV: //L (µG II) AS S: //7) (0114	, SILVE - DIS ED SOLV /L (µC E) AS A	F RECO ED ERAB G/L (μα G) AS A 5) (0107	L ZINC DV- DIS BLE SOLV G/L (μ μ μ μ μ μ μ μ	- RECO ED ERAB G/L (μ N) AS Z 0) (0109	L V- LE G/L N)